Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.227
Filtrar
1.
Mol Med ; 30(1): 59, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745316

RESUMO

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Assuntos
Autofagia , Modelos Animais de Doenças , Microglia , Doenças Neuroinflamatórias , Traumatismo por Reperfusão , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/etiologia , Autofagia/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Polaridade Celular/efeitos dos fármacos
2.
Brain Behav ; 14(5): e3504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698583

RESUMO

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Assuntos
Eletroacupuntura , Infarto da Artéria Cerebral Média , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Eletroacupuntura/métodos , Masculino , Ratos , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/diagnóstico por imagem , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/terapia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Modelos Animais de Doenças , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , AVC Isquêmico/terapia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia
3.
Eur Radiol Exp ; 8(1): 59, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744784

RESUMO

BACKGROUND: This study investigates the potential of diffusion tensor imaging (DTI) in identifying penumbral volume (PV) compared to the standard gadolinium-required perfusion-diffusion mismatch (PDM), utilizing a stack-based ensemble machine learning (ML) approach with enhanced explainability. METHODS: Sixteen male rats were subjected to middle cerebral artery occlusion. The penumbra was identified using PDM at 30 and 90 min after occlusion. We used 11 DTI-derived metrics and 14 distance-based features to train five voxel-wise ML models. The model predictions were integrated using stack-based ensemble techniques. ML-estimated and PDM-defined PVs were compared to evaluate model performance through volume similarity assessment, the Pearson correlation analysis, and Bland-Altman analysis. Feature importance was determined for explainability. RESULTS: In the test rats, the ML-estimated median PV was 106.4 mL (interquartile range 44.6-157.3 mL), whereas the PDM-defined median PV was 102.0 mL (52.1-144.9 mL). These PVs had a volume similarity of 0.88 (0.79-0.96), a Pearson correlation coefficient of 0.93 (p < 0.001), and a Bland-Altman bias of 2.5 mL (2.4% of the mean PDM-defined PV), with 95% limits of agreement ranging from -44.9 to 49.9 mL. Among the features used for PV prediction, the mean diffusivity was the most important feature. CONCLUSIONS: Our study confirmed that PV can be estimated using DTI metrics with a stack-based ensemble ML approach, yielding results comparable to the volume defined by the standard PDM. The model explainability enhanced its clinical relevance. Human studies are warranted to validate our findings. RELEVANCE STATEMENT: The proposed DTI-based ML model can estimate PV without the need for contrast agent administration, offering a valuable option for patients with kidney dysfunction. It also can serve as an alternative if perfusion map interpretation fails in the clinical setting. KEY POINTS: • Penumbral volume can be estimated by DTI combined with stack-based ensemble ML. • Mean diffusivity was the most important feature used for predicting penumbral volume. • The proposed approach can be beneficial for patients with kidney dysfunction.


Assuntos
Imagem de Tensor de Difusão , Aprendizado de Máquina , Animais , Masculino , Ratos , Imagem de Tensor de Difusão/métodos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Ratos Sprague-Dawley
4.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716368

RESUMO

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Ferroptose/efeitos dos fármacos , Animais , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
5.
Sci Rep ; 14(1): 10186, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702377

RESUMO

Spreading depolarizations (SDs) occur frequently in patients with malignant hemispheric stroke. In animal-based experiments, SDs have been shown to cause secondary neuronal damage and infarct expansion during the initial period of infarct progression. In contrast, the influence of SDs during the delayed period is not well characterized yet. Here, we analyzed the impact of SDs in the delayed phase after cerebral ischemia and the potential protective effect of ketamine. Focal ischemia was induced by distal occlusion of the left middle cerebral artery in C57BL6/J mice. 24 h after occlusion, SDs were measured using electrocorticography and laser-speckle imaging in three different study groups: control group without SD induction, SD induction with potassium chloride, and SD induction with potassium chloride and ketamine administration. Infarct progression was evaluated by sequential MRI scans. 24 h after occlusion, we observed spontaneous SDs with a rate of 0.33 SDs/hour which increased during potassium chloride application (3.37 SDs/hour). The analysis of the neurovascular coupling revealed prolonged hypoemic and hyperemic responses in this group. Stroke volume increased even 24 h after stroke onset in the SD-group. Ketamine treatment caused a lesser pronounced hypoemic response and prevented infarct growth in the delayed phase after experimental ischemia. Induction of SDs with potassium chloride was significantly associated with stroke progression even 24 h after stroke onset. Therefore, SD might be a significant contributor to delayed stroke progression. Ketamine might be a possible drug to prevent SD-induced delayed stroke progression.


Assuntos
Isquemia Encefálica , Progressão da Doença , Ketamina , Camundongos Endogâmicos C57BL , Ketamina/farmacologia , Animais , Camundongos , Masculino , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Infarto da Artéria Cerebral Média
6.
Sci Rep ; 14(1): 10201, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702399

RESUMO

The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.


Assuntos
Movimento Celular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , AVC Isquêmico , Receptores CCR4 , Linfócitos T Reguladores , Animais , Receptores CCR4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , AVC Isquêmico/imunologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Microglia/metabolismo , Microglia/imunologia , Masculino , Camundongos Endogâmicos C57BL , Quimiocinas/metabolismo
7.
Croat Med J ; 65(2): 122-137, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38706238

RESUMO

AIM: To compare the effectiveness of artificial neural network (ANN) and traditional statistical analysis on identical data sets within the splenectomy-middle carotid artery occlusion (MCAO) mouse model. METHODS: Mice were divided into the splenectomized (SPLX) and sham-operated (SPLX-sham) group. A splenectomy was conducted 14 days before middle carotid artery occlusion (MCAO). Magnetic resonance imaging (MRI), bioluminescent imaging, neurological scoring (NS), and histological analysis, were conducted at two, four, seven, and 28 days after MCAO. Frequentist statistical analyses and ANN analysis employing a multi-layer perceptron architecture were performed to assess the probability of discriminating between SPLX and SPLX-sham mice. RESULTS: Repeated measures ANOVA showed no significant differences in body weight (F (5, 45)=0.696, P=0.629), NS (F (2.024, 18.218)=1.032, P=0.377) and brain infarct size on MRI between the SPLX and SPLX-sham groups post-MCAO (F (2, 24)=0.267, P=0.768). ANN analysis was employed to predict SPLX and SPL-sham classes. The highest accuracy in predicting SPLX class was observed when the model was trained on a data set containing all variables (0.7736±0.0234). For SPL-sham class, the highest accuracy was achieved when it was trained on a data set excluding the variable combination MR contralateral/animal mass/NS (0.9284±0.0366). CONCLUSION: This study validated the neuroprotective impact of splenectomy in an MCAO model using ANN for data analysis with a reduced animal sample size, demonstrating the potential for leveraging advanced statistical methods to minimize sample sizes in experimental biomedical research.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Esplenectomia , Animais , Camundongos , Esplenectomia/métodos , Infarto da Artéria Cerebral Média/cirurgia , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Tamanho da Amostra , Masculino
8.
Sci Rep ; 14(1): 10008, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693282

RESUMO

Historically, investigators have not differentiated between patients with and without hemorrhagic transformation (HT) in large core ischemic stroke at risk for life-threatening mass effect (LTME) from cerebral edema. Our objective was to determine whether LTME occurs faster in those with HT compared to those without. We conducted a two-center retrospective study of patients with ≥ 1/2 MCA territory infarct between 2006 and 2021. We tested the association of time-to-LTME and HT subtype (parenchymal, petechial) using Cox regression, controlling for age, mean arterial pressure, glucose, tissue plasminogen activator, mechanical thrombectomy, National Institute of Health Stroke Scale, antiplatelets, anticoagulation, temperature, and stroke side. Secondary and exploratory outcomes included mass effect-related death, all-cause death, disposition, and decompressive hemicraniectomy. Of 840 patients, 358 (42.6%) had no HT, 403 (48.0%) patients had petechial HT, and 79 (9.4%) patients had parenchymal HT. LTME occurred in 317 (37.7%) and 100 (11.9%) had mass effect-related deaths. Parenchymal (HR 8.24, 95% CI 5.46-12.42, p < 0.01) and petechial HT (HR 2.47, 95% CI 1.92-3.17, p < 0.01) were significantly associated with time-to-LTME and mass effect-related death. Understanding different risk factors and sequelae of mass effect with and without HT is critical for informed clinical decisions.


Assuntos
Hospitalização , Infarto da Artéria Cerebral Média , Humanos , Feminino , Masculino , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Infarto da Artéria Cerebral Média/complicações , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/mortalidade , Hemorragia Cerebral/complicações , Edema Encefálico/etiologia , Fatores de Risco , AVC Isquêmico/mortalidade
9.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717643

RESUMO

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Assuntos
Anexina A1 , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Regulação para Cima , Animais , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Anexina A1/metabolismo , Regulação para Cima/efeitos dos fármacos , Sirtuínas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
10.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700011

RESUMO

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , AVC Isquêmico/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Camundongos Knockout , Camundongos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Sistema Nervoso Simpático/fisiopatologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Cardiopatias/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência
11.
J Med Case Rep ; 18(1): 244, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734655

RESUMO

BACKGROUND: Danon disease is a lysosomal storage disorder with X-linked inheritance. The classic triad is severe hypertrophic cardiomyopathy, myopathy, and intellectual disability, with different phenotypes between both genders. Ischemic stroke is an uncommon complication, mostly cardioembolic, related to intraventricular thrombus or atrial fibrillation, among others. CASE REPORT: We report the case of a 14-year-old Caucasian male patient with Danon disease who suffered from an acute ischemic stroke due to occlusion in the M1 segment of the middle cerebral artery. He underwent mechanical thrombectomy, resulting in successful revascularization with satisfactory clinical outcome. We objectified the intraventricular thrombus in the absence of arrhythmic events. CONCLUSION: To our knowledge, we report the first case of ischemic stroke related to Danon disease treated with endovascular treatment.


Assuntos
Doença de Depósito de Glicogênio Tipo IIb , Humanos , Masculino , Doença de Depósito de Glicogênio Tipo IIb/complicações , Adolescente , Procedimentos Endovasculares , AVC Isquêmico/cirurgia , AVC Isquêmico/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/cirurgia , Resultado do Tratamento , Trombectomia
12.
J Physiol Pharmacol ; 75(2): 145-157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38736262

RESUMO

Stroke is the second leading cause of death worldwide. Understanding of gene expression dynamics could bring new approaches in diagnostics and therapy of stroke. Small noncoding molecules termed 'microRNA' represent the most flexible network of gene expression regulators. To screen out miRNAs that are mainly regulated during reperfusion in mechanically embolized patients, and study their mechanisms of action in reperfusion injury after thrombectomy, in order to find new therapeutic targets for mechanically embolized patients. Serums from 30 patients with moderate to severe stroke after mechanical thrombectomy (MT) were collected to measure miRNA expressions. Clinical information of patients was analyze, and patients were divided into poor prognosis and good prognosis. Factors affecting prognosis was classified, and independent risk factors for poor prognosis were determined. Prognostic value of National Institutes of Health Stroke Scale (NIHSS) score on admission to patients with MT was assessed. ROC (receiver operating characteristic) curves were drawn, and Kaplan-Merier method determined whether different NIHSS scores at admission had any difference in the in-hospital survival rate of consistency index/random consistency index (CI/RI) patients treated with MT. An oxygen-glucose deprivation/reperfusion (OGD/R) cell model and an middle cerebral artery occlusion (MCAO)/reperfusion mouse model were established, in which miR-298 expression was tested. In OGD/R cells, proliferation, apoptosis, and autophagy were assessed after intervention with miR-298 and/or autophagy related gene 5 (ATG5). In MCAO mice, the infarct area was calculated, and neurological function was assessed. The relationship between miR-298 and ATG5 was explored and validated. Age, diabetes, hypertension, hemorrhage transformation, NIHSS score at admission, leukocyte, neutrophil count and neutrophil to lymphocyte ratio (NLR) level were associated with patient's prognosis. Diabetes, NIHSS score at admission, and hemorrhagic transformation were independent risk factors for predicting poor prognosis in patients treated with MT. NIHSS score on admission had a predictive value on patient's prognosis. miR-298 was upregulated in acute cerebral ischemia patients with MT (p<0.05), especially in those with poor prognosis. miR-298 was elevated in both cell and mouse models (p<0.05). Apoptosis and autophagy of cells were weakened after miR-298 knockdown, and infarction in the mouse brain tissues was reduced. ATG5 was a target of miR-298. Overexpressing ATG5 rescued miR-298-induced apoptosis and autophagy. In conclusion: regulation of miR-298 and ATG5 attenuates neuronal apoptosis and autophagy, providing a new strategy for brain injury after reperfusion in patients with MT.


Assuntos
Apoptose , MicroRNAs , Traumatismo por Reperfusão , Trombectomia , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Trombectomia/métodos , Traumatismo por Reperfusão/metabolismo , Camundongos , Infarto da Artéria Cerebral Média/cirurgia , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Autofagia/fisiologia , Prognóstico , Acidente Vascular Cerebral
13.
Exp Gerontol ; 191: 112448, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697555

RESUMO

BACKGROUND: Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE: This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS: Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS: We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, ß-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100ß and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION: This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , NF-kappa B , Farmacologia em Rede , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
14.
J Neuroimmunol ; 390: 578344, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38640826

RESUMO

BACKGROUND: Targeting ACC1 (acetyl coenzyme A carboxylase 1) to restore the balance between T-helper 17 (Th17) cells and regulatory T cells (Tregs) through metabolic reprogramming has emerged as a promising strategy for reducing neuroinflammation following stroke. We examined the roles of potential miRNAs in regulating ACC1 expression in Tregs and treating ischemic stroke. METHODS: The expression of miR-24-3p in CD4+T cells of mice was confirmed. Then the protective effects of Ago-24-3p in a mouse model of prolonged occlusion of the distal middle cerebral artery (dMCAO) were examined. We analyzed the infiltration of Tregs and CD3+T cells into the brain and evaluated the improvement of neurological deficits induced by Ago-24-3p using the Modified Garcia Score and foot fault testing. RESULTS: Our investigation revealed that miR-24-3p specifically targets ACC1. Elevated levels of miR-24-3p have been demonstrated to increase the population of Tregs and enhance their proliferation and suppressive capabilities. Conversely, targeted reduction of ACC1 in CD4+T cells has been shown to counteract the improved functionality of Tregs induced by miR-24-3p. In a murine model of dMCAO, administration of Ago-24-3p resulted in a substantial reduction in the size of the infarct within the ischemic brain area. This effect was accompanied by an upregulation of Tregs and a downregulation of CD3+T cells in the ischemic brain region. In ACC1 conditional knockout mice, the ability of Ago-24-3p to enhance infiltrating Treg cells and diminish CD3+T cells in the ischemic brain area has been negated. Furthermore, its capacity to reduce infarct volume has been reversed. Furthermore, we demonstrated that Ago-24-3p sustained improvement in post-stroke neurological deficits for up to 4 weeks after the MCAO procedure. CONCLUSIONS: MiR-24-3p shows promise in the potential to reduce ACC1 expression, enhance the immunosuppressive activity of Tregs, and alleviate injuries caused by ischemic stroke. These discoveries imply that miR-24-3p could be a valuable therapeutic option for treating ischemic stroke.


Assuntos
Isquemia Encefálica , Camundongos Endogâmicos C57BL , MicroRNAs , Linfócitos T Reguladores , Células Th17 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Camundongos , Células Th17/metabolismo , Masculino , Isquemia Encefálica/imunologia , Infarto da Artéria Cerebral Média , Acetil-CoA Carboxilase
15.
Aging (Albany NY) ; 16(8): 7474-7486, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38669115

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is one of the most difficult challenges in cerebrovascular disease research. It is primarily caused by excessive autophagy induced by oxidative stress. Previously, a novel compound X5 was found, and the excellent antioxidant activity of it was verified in this study. Moreover, network pharmacological analysis suggested that compound X5 was closely associated with autophagy and the mTOR pathway. In vitro, X5 could significantly inhibit the expression of autophagy proteins Beclin-1 and LC3-ß, which are induced by H2O2, and promote the expression of SIRT1. In vivo, compound X5 significantly reduced the infarct size and improved the neurological function scores in the middle cerebral artery occlusion (MCAO) model of rats. In conclusion, ROS-induced autophagy is closely related to mTOR, SIRT1 and others, and X5 holds promise as a candidate for the treatment of CIRI.


Assuntos
Antioxidantes , Autofagia , Farmacologia em Rede , Traumatismo por Reperfusão , Sirtuína 1 , Serina-Treonina Quinases TOR , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Autofagia/efeitos dos fármacos , Antioxidantes/farmacologia , Ratos , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo
16.
AJNR Am J Neuroradiol ; 45(5): 574-580, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38575322

RESUMO

BACKGROUND AND PURPOSE: Collaterals are important in large vessel occlusions (LVO), but the role of carotid artery disease (CAD) in this context remains unclear. This study aimed to investigate the impact of CAD on intracranial collateralization and infarct growth after thrombectomy in LVO. MATERIALS AND METHODS: All patients who underwent thrombectomy due to M1 segment occlusion from 01/2015 to 12/2021 were retrospectively included. Internal carotid artery stenosis according to NASCET was assessed on the affected and nonaffected sides. Collaterals were assessed according to the Tan score. Infarct growth was quantified by comparing ASPECTS on follow-up imaging with baseline ASPECTS. RESULTS: In total, 709 patients were included, 118 (16.6%) of whom presented with CAD (defined as severe stenosis ≥70% or occlusion ipsilaterally), with 42 cases (5.9%) being contralateral. Good collateralization (Tan 3) was present in 56.5% of the patients with ipsilateral CAD and 69.1% of the patients with contralateral CAD. The ipsilateral stenosis grade was an independent predictor of good collateral supply (adjusted OR: 1.01; NASCET point, 95% CI: 1.00-1.01; P = .009), whereas the contralateral stenosis grade was not (P = .34). Patients with ipsilateral stenosis of ≥70% showed less infarct growth (median ASPECTS decay: 1; IQR: 0-2) compared with patients with 0%-69% stenosis (median: 2; IQR: 1-3) (P = .005). However, baseline ASPECTS was significantly lower in patients with stenosis of 70%-100% (P < .001). The results of a multivariate analysis revealed that increasing ipsilateral stenosis grade (adjusted OR: 1.0; 95% CI: 0.99-1.00; P = .004) and good collateralization (adjusted OR: 0.5; 95% CI: 0.4-0.62; P < .001) were associated with less infarct growth. CONCLUSIONS: CAD of the ipsilateral ICA is an independent predictor of good collateral supply. Patients with CAD tend to have larger baseline infarct size but less infarct growth.


Assuntos
Estenose das Carótidas , Circulação Colateral , Infarto da Artéria Cerebral Média , Humanos , Masculino , Feminino , Idoso , Estudos Retrospectivos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Pessoa de Meia-Idade , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Trombectomia , Doenças das Artérias Carótidas/diagnóstico por imagem , Idoso de 80 Anos ou mais
17.
Behav Brain Res ; 467: 114991, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614209

RESUMO

Stroke is a leading cause of death and disability in the United States. Most strokes are ischemic, resulting in both cognitive and motor impairments. Animal models of ischemic stroke such as the distal middle cerebral artery occlusion (dMCAO) and photothrombotic stroke (PTS) procedures have become invaluable tools, with their own advantages and disadvantages. The dMCAO model is clinically relevant as it occludes the artery most affected in humans, but yields variability in the infarct location as well as the behavioral and cognitive phenotypes disrupted. The PTS model has the advantage of allowing for targeted location of infarct, but is less clinically relevant. The present study evaluates phenotype disruption over time in mice subjected to either dMCAO, PTS, or a sham surgery. Post-surgery, animals were tested over 28 days on standard motor tasks (grid walk, cylinder, tapered beam, and rotating beam), as well as a novel odor-based operant task; the 5:1 Odor Discrimination Task (ODT). Results demonstrate a significantly greater disturbance of motor control with PTS as compared with Sham and dMCAO. Disruption of the PTS group was detected up to 28 days post-stroke on the grid walk, and up to 7 days on the rotating and tapered beam tasks. PTS also led to significant short-term disruption of ODT performance (1-day post-surgery), exclusively in males, which appeared to be driven by motoric disruption of the lick response. Together, this data provides critical insights into the selection and optimization of animal models for ischemic stroke research. Notably, the PTS procedure was best suited for producing disruptions of motor behavior that can be detected with common behavioral assays and are relatively enduring, as is observed in human stroke.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , Animais , Masculino , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/complicações , Camundongos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Atividade Motora/fisiologia , AVC Trombótico , Feminino , Odorantes , Discriminação Psicológica/fisiologia , Comportamento Animal/fisiologia , AVC Isquêmico/fisiopatologia
18.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621906

RESUMO

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Gliose/patologia , Ratos Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocam , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
19.
Int Immunopharmacol ; 132: 112030, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603861

RESUMO

Mast cells (MCs) play a significant role in various diseases, and their activation and degranulation can trigger inflammatory responses and barrier damage. Several studies have indicated that vagus nerve stimulation (VNS) exerts ameliorates neurological injury, and regulates gut MC degranulation. However, there is limited research on the modulatory effect of VNS on MCs in both the gut and brain in brain ischemia-reperfusion (I/R) injury in this process. We aim to develop a minimally invasive, targeted and convenient VNS approach to assess the impact of VNS and to clarify the relationship between VNS and MCs on the prognosis of acute ischemic stroke. We utilized middle cerebral artery occlusion/reperfusion (MCAO/r) to induce brain I/R injury. After the experiment, the motor function and neurofunctional impairments of the rats were detected, and the gastrointestinal function, blood-brain barrier (BBB) and intestinal barrier damage, and systemic and local inflammation were evaluated by Nissl, TTC staining, Evans blue, immunofluorescence staining, transmission electron microscopy, western blot assays, ELISA, and fecal 16S rRNA sequencing methods. Our research confirmed that our minimally invasive VNS method is a novel approach for stimulating the vagus nerve. VNS alleviated motor deficits and gastrointestinal dysfunction while also suppressing intestinal and neuroinflammation. Additionally, VNS ameliorated gut microbiota dysbiosis in rats. Furthermore, our analysis indicated that VNS reduces chymase secretion by modulating MCs degranulation and improves intestinal and BBB damage. Our results showed that VNS treatment can alleviate the damage of BBB and colonic barrier after cerebral I/R by modulating mast cell degranulation, and alleviates systemic inflammatory responses.


Assuntos
Barreira Hematoencefálica , Eixo Encéfalo-Intestino , Degranulação Celular , Microbioma Gastrointestinal , AVC Isquêmico , Mastócitos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Estimulação do Nervo Vago , Animais , Mastócitos/imunologia , Estimulação do Nervo Vago/métodos , Masculino , Ratos , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/imunologia , AVC Isquêmico/terapia , Eixo Encéfalo-Intestino/fisiologia , Infarto da Artéria Cerebral Média/terapia , Modelos Animais de Doenças , Isquemia Encefálica/terapia , Isquemia Encefálica/imunologia
20.
Brain Res Bull ; 211: 110944, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604377

RESUMO

Ischemic stroke is a serious cerebrovascular condition. Isobavachalcone (ISO) has been documented to exhibit an anti-inflammatory effect across a variety of diseases; however, its protective impact on ischemic stroke remains unexplored. In this study, we evaluated the influence of ISO in both transient middle cerebral artery occlusion/reperfusion (tMCAO/R) rat models and oxygen-glucose deprivation/reperfusion (OGD/R) cell models. We observed that pretreatment with 50 mg/kg ISO diminished the volume of brain infarction, reduced brain edema, and ameliorated neurological deficits in rats. A reduction in Nissl bodies was noted in the tMCAO/R group, which was reversed following treatment with 50 mg/kg ISO. TUNEL/NeuN double staining revealed a decrease in TUNEL-positive cells in tMCAO/R rats treated with ISO. Furthermore, ISO treatment suppressed the expression of cleaved caspase-3 and BAX, while elevating the expression of BCL-2 in tMCAO/R rats. The levels of CD86 and iNOS were elevated in tMCAO/R rats; conversely, ISO treatment enhanced the expression of CD206 and Arg-1. Additionally, the expression of TNF-α, IL-6, and IL-1ß was elevated in tMCAO/R rats, whereas ISO treatment counteracted this effect. ISO treatment also increased the expression of TGF-ß and IL-10 in the ischemic penumbra of tMCAO/R rats. It was found that ISO treatment hindered microglial M1 polarization and favored M2 polarization. Histone Deacetylase 1 (HDAC1) is the downstream target protein of ISO, with ISO treatment resulting in decreased HDAC1 expression in both tMCAO/R rats and OGD/R-induced cells. Overexpression of HDAC1 was shown to promote microglial M1 polarization and inhibit M2 polarization in OGD/R+ISO cells. Overall, ISO treatment mitigated brain damage following ischemic stroke by promoting M2 polarization and attenuated ischemic injury by repressing HDAC1 expression.


Assuntos
Chalconas , Histona Desacetilase 1 , AVC Isquêmico , Ratos Sprague-Dawley , Animais , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Ratos , Histona Desacetilase 1/metabolismo , Chalconas/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA